AI+教育系统如何颠覆学习?这有三类应用帮你详解

  • 时间:
  • 浏览:8
  • 来源:淮南师范学院教务处_中央司法警官学院教务处_大连大学教务处海洋
阅读模式 18:11 导语:AI+教育能为学习带来什么帮助?自适应、协作学习还是VR辅助?

雷锋网按:近日,CNNIC(中国互联网络信息中心)发布最新中国网络发展状况统计报告表示,AI技术正驱动教育产业升级。在这一浪潮下,一大批教育企业正拼尽全力加入AI+教育的阵营,以期争当第一批吃螃蟹的“王者”。本文由雷锋网编译于培生集团发布的关于AI+教育的研究报告《Intelligence Unleashed: an argument for AI in education》,作者为来自UCL(伦敦大学学院)的Rose Luckin、 Wayne Holmes,以及培生集团的Mark Griffiths、Laurie B. Forcier。

众所周知,很多AI+教育的应用已经被大中小学校等机构所使用。许多包含AI+教育和教育数据挖掘(EDM)技术也被用来追踪学生的行为。

举个例子,通过收集课堂上学生的出勤率和任务提交的数据,以便了解学生是否处于无心学习的状态。还有其他AI研究员正在探索更具创意的用户界面,如 NLP(自然语言处理)、演讲和姿态、眼球追踪和其他物理传感器。

然而,在这篇文章里,我们将着重专注于三类已经可以直接用来支持学习的AI+教育软件应用:

▪ 为学习者提供个性化指导;

▪ 为协作学习提供智能支持;

▪ 虚拟现实辅助学习。

自适应系统丨 AI+教育可以为每个人提供智能化、个性化指导

在实体教学中,一对一指导往往被认为是最有效的途径。但是这个方法对所有学生而言并不完全适用。原因有二:一来没有这么多老师,二来学生也担负不起这么高的辅导费用。

所以这就给大家提出了一个难题:我们如何将一对一指导的积极影响提供给所有科目的所有学生。

这也是ITS(智能辅导系统)接入的地方。ITS 利用 AI 技术,可模拟一对一指导,提供最适合学员认知需求的学习任务,并提供针对性的及时反馈意见。而这个过程都不需要老师的出席。

一些ITS系统还能帮助学员管理自己的学习状态,从而培养 自律能力。还有一部分人可使用教学策略来管理学习,以便在学习中可以获得适当的挑战和支持。

20世纪70年代,第一批AI系统提供了 个性化和自适应指导。以 BUGGY 为例,这是一个旨在指导加减法的开创性系统,使用了一个学习者在程序运算中可能会弄混淆的模型。这个“错误库”,是该系统中一个有效的主导模型,用于诊断学员们犯的每一个错误,以便提供适当的指导。最初,它受到可以识别的错误的限制,而这些 bug 已经包含在原始代码中。随着时间 的推移,额外的误解被发现并被添加到这个“错误库”里。

除了这些模型,最近很多 ITS 系统还使用了机器学习技术、基于大数据集的自我训练算法和神经网络,它们可为这些学习者提供正在学习的内容 并作出适当的决策。然而,通过这个方式,依然很难让这些决定变得合理又明确。

相较而言,基于现代模型的自适应 系统则要灵活得多。它们可以让系统作出的每一项决定,都 能被人类正确的理解,从而更适用于课堂教学。在过去十年中,随着学习者和教育学家的日益复杂性,主导模型也被引入到许多自适应系统中以支持个性化学习推荐。

例如, iTalk2Learn 系统,旨在帮助年轻学生学习数学的「分数」部分,并使用了一个学 习者模型,其中包含了学习者的数学知识水平、认知需求、情感状态,以及他们收到的反馈和对反馈的反应等信息。

基于自适应学习可以包括一系列AI+教育的工具:

▪ 学习者认知和情感状态的模型。

▪ 利用对话让学生参与涉及探究和讨论、提问和回答的学习体验。

▪ 包括开放式学习者模型,以促进学习者的反思和自我意识。

▪ 采用元认知架构(如,通过提供动态帮助或使用叙述框架)来增强学习者的动机和参与度。

▪ 使用社会模拟模型——例如,通过了解社会 规范和文化,让语言学习的学生可以更好地与目标语言的演讲者交流。

协作学习丨AI+教育可

猜你喜欢